LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Role of Adsorbate Coverage on the Oxygen Dissociation Rate on Sr-Doped LaMnO3 Surfaces in the Presence of H2O and CO2

Photo from wikipedia

Sr-doped LaMnO3 (LSM) is a promising oxygen reduction reaction electrocatalyst in solid oxide fuel cells and other electrochemical devices. The presence of CO2 and H2O has been reported to promote… Click to show full abstract

Sr-doped LaMnO3 (LSM) is a promising oxygen reduction reaction electrocatalyst in solid oxide fuel cells and other electrochemical devices. The presence of CO2 and H2O has been reported to promote the oxygen dissociation reaction on LSM surfaces. Here, we investigate the coadsorption mechanism of O2 with H2O or CO2 by combining first-principles calculations of the (0 0 1) surface containing 25–100% Sr with thermodynamic adsorption models. The molecules were found to chemisorb by formation of charged oxygen, hydroxide, and carbonate species, and the adsorption energies were exothermic up to monolayer coverage. Low concentrations of H2O or CO2 do not compete with O2 for adsorption sites under relevant conditions. However, their presence contributes to the total amount of oxygen-containing species. The increased coverage of oxygen species provides a quantitative explanation for the reported enhancement in oxygen dissociation kinetics in the presence of H2O/CO2. This study thereby provides insights into oxygen exchange mechanisms on LSM surfaces.

Keywords: oxygen dissociation; oxygen; h2o co2; presence

Journal Title: Chemistry of Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.