LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synergistic Interaction of Polycyclic Aromatic Hydrocarbons, Phthalate Esters, or Phenol on DNA Adduct Formation by Aristolochic Acid I: Insights into the Etiology of Balkan Endemic Nephropathy.

Photo by ertelier from unsplash

Balkan endemic nephropathy (BEN) is a multifactorial environmental disease, with chronic exposure to aristolochic acids (AAs) through AA-contaminated food being one of the major etiological mechanisms. However, the bulk of… Click to show full abstract

Balkan endemic nephropathy (BEN) is a multifactorial environmental disease, with chronic exposure to aristolochic acids (AAs) through AA-contaminated food being one of the major etiological mechanisms. However, the bulk of previous research has only focused on investigating the possible roles of individual pollutants in disease development and the etiological mechanism of BEN remains controversial. In this study, we investigated the exposure concentration and duration dependence of coexposure to phthalate esters and lignite coal-derived phenol and polycyclic aromatic hydrocarbons (PAHs) on the metabolism and DNA adduct formation of aristolochic acid I (AAI). Results showed that both the metabolic activation and DNA adduct formation of AAI in cultured human kidney cells were affected by their coexposure to the above-mentioned environmental pollutants. Furthermore, our results suggest that chemicals leached from lignite coal likely played a role by triggering AA-activating enzymes to produce more of the promutagenic DNA adducts, thus further elevating the nephrotoxicity and carcinogenicity of AAs and increasing the risk of BEN. It is believed that the results of this study provide a better understanding of the etiological mechanism of BEN and offer insights into methods and policies to lower the risk of this devastating disease.

Keywords: balkan endemic; adduct formation; etiology; dna adduct

Journal Title: Chemical research in toxicology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.