LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Machine Learning Model for Screening Thyroid Stimulating Hormone Receptor Agonists Based on Updated Datasets and Improved Applicability Domain Metrics.

Photo from wikipedia

Machine learning (ML) models for screening endocrine-disrupting chemicals (EDCs), such as thyroid stimulating hormone receptor (TSHR) agonists, are essential for sound management of chemicals. Previous models for screening TSHR agonists… Click to show full abstract

Machine learning (ML) models for screening endocrine-disrupting chemicals (EDCs), such as thyroid stimulating hormone receptor (TSHR) agonists, are essential for sound management of chemicals. Previous models for screening TSHR agonists were built on imbalanced datasets and lacked applicability domain (AD) characterization essential for regulatory application. Herein, an updated TSHR agonist dataset was built, for which the ratio of active to inactive compounds greatly increased to 1:2.6, and chemical spaces of structure-activity landscapes (SALs) were enhanced. Resulting models based on 7 molecular representations and 4 ML algorithms were proven to outperform previous ones. Weighted similarity density (ρs) and weighted inconsistency of activities (IA) were proposed to characterize the SALs, and a state-of-the-art AD characterization methodology ADSAL{ρs, IA} was established. An optimal classifier developed with PubChem fingerprints and the random forest algorithm, coupled with ADSAL{ρs ≥ 0.15, IA ≤ 0.65}, exhibited good performance on the validation set with the area under the receiver operating characteristic curve being 0.984 and balanced accuracy being 0.941 and identified 90 TSHR agonist classes that could not be found previously. The classifier together with the ADSAL{ρs, IA} may serve as efficient tools for screening EDCs, and the AD characterization methodology may be applied to other ML models.

Keywords: methodology; applicability domain; machine learning; hormone receptor; thyroid stimulating; stimulating hormone

Journal Title: Chemical research in toxicology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.