LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identifying Cysteine, N-Acetylcysteine, and Glutathione-Conjugates as Novel Metabolites of Aristolochic Acid I: Emergence of a New Detoxification Pathway.

Photo by impulsq from unsplash

There is accumulating evidence that Balkan endemic nephropathy (BEN) is an environmental disease caused by aristolochic acids (AAs) released from the decomposition of Aristolochia clematitis L., an AA-containing weed that… Click to show full abstract

There is accumulating evidence that Balkan endemic nephropathy (BEN) is an environmental disease caused by aristolochic acids (AAs) released from the decomposition of Aristolochia clematitis L., an AA-containing weed that grows abundantly in the Balkan Peninsula. AA exposure has also been associated with carcinoma development in the upper urinary tract of some patients suffering from BEN. It is believed that an aristolactam-nitrenium ion intermediate with a delocalized positive charge produced in the hepatic metabolism of AAs binds to DNA and the resulting DNA adduct is responsible for initiating the carcinoma development process. In this study, we demonstrated for the first time that the aristolactam-nitrenium ion intermediate will also react with endogenous aminothiols, e.g. cysteine, N-acetylcysteine, and glutathione in vitro and in rats, producing phase II-conjugated metabolites in a dosage-dependent manner. It is highly possible that this conjugation process consumes and ultimately deactivates this carcinogenic intermediate and acts as an important, but previously unreported detoxification mechanism of AAs. Results also showed AAs, phase I metabolites and the aminothiol-conjugated metabolites are rapidly eliminated from AA-exposed rats. Furthermore, we found evidence that AA exposure induced oxidative stress in rats, as indicated by the glutathione depletion in rat serum samples.

Keywords: acetylcysteine glutathione; cysteine acetylcysteine; detoxification; identifying cysteine; glutathione conjugates; glutathione

Journal Title: Chemical research in toxicology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.