Precise control over the size, shape, composition, structure, and crystal phase of random alloy and intermetallic nanocrystals has been intensively explored in technologically important applications in recent years. Different from… Click to show full abstract
Precise control over the size, shape, composition, structure, and crystal phase of random alloy and intermetallic nanocrystals has been intensively explored in technologically important applications in recent years. Different from the monometallic nanocrystals and other types of structural nanocrystals such as core-shell and heterostructured nanocrystals, well-defined multimetallic random alloy and intermetallic nanocrystals exhibit unique and intriguing physicochemical properties, serving as ideal models for benefiting the structure-to-property studies. As such, random alloy and intermetallic nanocrystals have attracted extensive attention and interest in scientific research and shown huge potential in various fields. In this review, we focus specifically on summarizing the synthetic principles and strategies developed to form random alloy and intermetallic nanocrystals with enhanced performance. Some representative examples are purposely selected for emphasizing basic concepts and mechanistic understanding. We then highlight the fascinating properties and widespread applications of random alloy and intermetallic nanocrystals in electrocatalysis, heterogeneous catalysis, optical and photocatalysis, as well as magnetism and conclude the review by addressing the prospects and current challenges for the controlled synthesis of random alloy and intermetallic nanocrystals.
               
Click one of the above tabs to view related content.