LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Low-Salinity Surfactant Nanofluid Formulations for Wettability Alteration of Sandstone: Role of the SiO2 Nanoparticle Concentration and Divalent Cation/SO42– Ratio

Photo by lureofadventure from unsplash

Low-salinity water injection emerges to be a cost-effective and environmentally friendly enhanced oil recovery technique. Furthermore, additives, such as the surfactant and nanoparticles in combination with low-salinity water, appear to… Click to show full abstract

Low-salinity water injection emerges to be a cost-effective and environmentally friendly enhanced oil recovery technique. Furthermore, additives, such as the surfactant and nanoparticles in combination with low-salinity water, appear to be promising formulations for rock wettability modification and surfactant adsorption control. The detailed interaction of these novel formulations and the rock surface is, however, not well understood. Thus, an experimental study was conducted here, and results show that the anionic surfactant (AOT, 11.247 mM) augmented the effect of silica nanoparticles (1000–3000 mg/L concentration) at low-salinity conditions as effective surfactant adsorption control agents when used at appropriate divalent cation/sulfate ion ratios. Low-salinity surfactant nanofluids may thus be applied for wettability alteration of oil-bearing sandstone reservoirs for recovering residual oil. Here, we demonstrate that the ratio of divalent cations to sulfate ions (0 ≤ M2+/SO42– ≤ 4.427) has a signifi...

Keywords: wettability alteration; low salinity; salinity surfactant; divalent cation; salinity

Journal Title: Energy & Fuels
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.