LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The shallow and deep hypothesis: subsurface chemical contrasts shape nitrate export patterns from different land uses.

Photo from wikipedia

Eutrophication has threatened water resources worldwide yet mechanistic understanding on controls of nutrient export remain elusive. This work tests the shallow and deep hypothesis: subsurface chemical contrasts regulate nitrate export… Click to show full abstract

Eutrophication has threatened water resources worldwide yet mechanistic understanding on controls of nutrient export remain elusive. This work tests the shallow and deep hypothesis: subsurface chemical contrasts regulate nitrate export patterns under different land use conditions. We synthesized data from 228 watersheds and used reactive transport modeling (500 simulations) under broad land use, climate, and geology conditions. Data synthesis indicated that human perturbation has amplified chemical contrasts in shallow water (e.g., soil water) versus deep waters (e.g., groundwater), inducing primarily flushing patterns (concentrations increase with streamflow) in agriculture lands and dilution patterns (concentrations decrease with streamflow) in urban watersheds. Results revealed a quantitative relationship between export patterns and subsurface concentration contrasts, underscoring the often-overlooked role of nitrate distribution over depth. Results challenge the commonly-held perception that legacy stores in agricultural lands induce chemostasis where concentrations vary negligibly with streamflow. They suggest nitrate concentrations from agricultural lands will escalate during large hydrological events, which can exacerbate nutrient export problems as flooding events intensify in the future climate.

Keywords: export; chemical contrasts; export patterns; land; deep hypothesis; shallow deep

Journal Title: Environmental science & technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.