Understanding the recovery of anaerobic ammonium-oxidizing (anammox) bacteria after inhibition by dissolved oxygen (DO) is critical for the successful applications of anammox-based processes. Therefore, the effects of oxygen exposure (2… Click to show full abstract
Understanding the recovery of anaerobic ammonium-oxidizing (anammox) bacteria after inhibition by dissolved oxygen (DO) is critical for the successful applications of anammox-based processes. Therefore, the effects of oxygen exposure (2 mg L-1 DO for 90 min) and subsequent recovery treatments [N2 purging or nano zero-valent iron (nZVI) addition] on the activity and gene expression in a Kuenenia stuttgartiensis enrichment culture were examined. Combining the self-organizing map clustering and enrichment analysis, we proposed the oxidative stress response of anammox bacteria based on the existing concepts of oxidative stress in microbes: the DO exposure triggered a stringent response in K. stuttgartiensis, which downregulated the transcription levels of genes involved in the central metabolism and diverted energy to a flagellar assembly and metal transport modules; these changes possibly promoted survival during the inhibition of anammox activity. According to the cotranscription with central catabolism genes, putative reactive oxygen species (ROS) scavenger genes (kat and sod) were presumed to detoxify the anammox intermediates rather than ROS. In addition, both activity and mRNA profiles with appropriate amount of nZVI addition (5 and 25 mg L-1) were close to that of control, which proved the effectiveness of nZVI addition in anammox recovery. These results would be relevant to the physio-biochemistry development of anammox bacteria and further enhancement of nitrogen removal in wastewater treatment.
               
Click one of the above tabs to view related content.