LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Co3O4 nanosheets preferentially growing (2 2 0) facet with a large amount of surface chemisorbed oxygen for efficient oxidation of elemental mercury from flue gas.

Photo from wikipedia

Oxygen vacancies can capture and activate gaseous oxygen, forming surface chemisorbed oxygen, which plays an important role in the Hg0 oxidation process. Fine control of oxygen vacancies is necessary and… Click to show full abstract

Oxygen vacancies can capture and activate gaseous oxygen, forming surface chemisorbed oxygen, which plays an important role in the Hg0 oxidation process. Fine control of oxygen vacancies is necessary and a major challenge in this field. A novel method for facet control combined with morphology control was used to synthesize Co3O4 nanosheets preferentially growing (2 2 0) facet to give more oxygen vacancies. XPS results show that the (2 2 0) facet has a higher Co3+/Co2+ ratio, leading to more oxygen vacancies via the Co3+ reduction process. DFT calculations confirm that the (2 2 0) facet has a lower oxygen vacancy formation energy. Furthermore, SEM and TEM results suggest that Co3O4 nanosheets yield more defects during the synthesis process. These results are the reasons for the greater number of oxygen vacancies in Co3O4 nanosheets which is confirmed by EELS, Raman and Photoluminescence Spectra. Therefore, Co3O4 nanosheets show excellent Hg0 removal efficiency over a wide temperature range of 100-350 °C at a high GHSV of 180,000 h-1. Additionally, the catalytic efficiency of Co3O4 nanosheets is still greater than 83%, even after 80 h of testing, and it recovers to its original level after 2 h of in situ thermal treatment at 500 °C.

Keywords: oxygen; chemisorbed oxygen; nanosheets preferentially; oxygen vacancies; surface chemisorbed; co3o4 nanosheets

Journal Title: Environmental science & technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.