LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Algae Biofilm Reduces Microbe-Derived Dissolved Organic Nitrogen Discharges: Performance and Mechanisms.

Photo from wikipedia

Microbe-derived dissolved organic nitrogen (mDON) can readily induce harmful phytoplankton blooms, and thus, restricting its discharges is necessary. Recently, algae biofilm (AB) has attracted increasing interest for its advantages in… Click to show full abstract

Microbe-derived dissolved organic nitrogen (mDON) can readily induce harmful phytoplankton blooms, and thus, restricting its discharges is necessary. Recently, algae biofilm (AB) has attracted increasing interest for its advantages in nutrient recovery. However, its features in mDON control remain unexplored. Herein, AB's mDON formation and utilization performance, molecular characteristics, and metabolic traits have been investigated, with activated sludge (AS) as the benchmark for comparisons. Comparatively, AB reduced mDON formation by 83% when fed with DON-free wastewater. When fed with AS's effluent, it consumed at least 72% of the exogenous mDON and notably reduced the amount of protein/amino sugar-like compounds. Irrespective of the influent, AB ultimately produced more various unsaturated hydrocarbon and lignin analogues. Redundancy and network analysis highlighted the algal-bacterial synergistic effects exemplified by cross-feeding in reducing mDON concentrations and shaping mDON pools. Moreover, metagenomics-based metabolic reconstruction revealed that cyanobacteria Limnothrix and Kamptonema spp. facilitated mDON uptake, ammonification, and recycling, which supplied the extensive nitrogen assimilatory demand for amino acids, vitamins, and cofactors biosynthesis, and therefore promoted mDON scavenging. Our findings demonstrate that regardless of the secondary or tertiary process, cyanobacteria-dominated AB is promising to minimize bioavailable mDON discharges, which has implications for future eutrophication control.

Keywords: nitrogen; derived dissolved; organic nitrogen; dissolved organic; microbe derived; algae biofilm

Journal Title: Environmental science & technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.