LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Direct Quantification of the Effect of Ammonium on Aerosol Droplet pH.

Photo from wikipedia

Ammonium is an important atmospheric constituent that dictates many environmental processes. The impact of the ammonium ion concentration on 10-50 μm aerosol droplet pH was quantified using pH nanoprobes and… Click to show full abstract

Ammonium is an important atmospheric constituent that dictates many environmental processes. The impact of the ammonium ion concentration on 10-50 μm aerosol droplet pH was quantified using pH nanoprobes and surface-enhanced Raman spectroscopy (SERS). Sample solutions were prepared by mixing 1 M ammonium sulfate (AS), ammonium nitrate (AN), sodium sulfate (SS), or sodium nitrate (SN) solutions with 1 M phosphate buffer (PB) at different volume ratios. Stable pH values were measured for pure PB, AS, and AN droplets at different concentrations. The centroid pH of 1 M PB droplets was ∼11, but when PB was systematically replaced with ammonium (AS- or AN-PB), the centroid pH within the droplets decreased from ≈11 to 5.5. Such a decrease was not observed in sodium (SS- or SN-PB) droplets, and no pH differences were observed between sulfate and nitrate salts. Ammonia partitioning to the gas phase in ammonium-containing droplets was evaluated to be negligible. Raman sulfate peak (∼980 cm-1) intensity measurements and surface tension measurements were conducted to investigate changes in ion distribution. The pH difference between ammonium-containing droplets and ammonium-free droplets is attributed to the alteration of the ion distribution in the presence of ammonium.

Keywords: quantification effect; aerosol droplet; ammonium; direct quantification; effect ammonium

Journal Title: Environmental science & technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.