LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CuO Quantum Dots Supported by SrTiO3 Perovskite Using the Flame Spray Pyrolysis Method: Enhanced Activity and Excellent Thermal Resistance for Catalytic Combustion of CO and CH4.

Photo from wikipedia

As a non-noble-metal catalyst, CuO has great potential in the catalytic combustion of CO and CH4. In this work, the influence of loading active copper components onto perovskites and essential… Click to show full abstract

As a non-noble-metal catalyst, CuO has great potential in the catalytic combustion of CO and CH4. In this work, the influence of loading active copper components onto perovskites and essential operating parameters in flame aerosol synthesis has been experimentally and theoretically investigated to optimize the catalytic efficiency for the complete oxidation of lean CO and CH4. Herein, the CuO-SrTiO3 nanocatalysts are one-step-synthesized by flame spray pyrolysis with varied copper loadings and precursor feeding rates. The sample under the precursor flow rate of 3 mL/min and the CuO loading of 15 mol % demonstrates optimal catalytic performance. It is primarily attributed to the excellent low-temperature reducibility and improved activity of copper species originated by CuO quantum dots and metal-support interaction. Besides, SrTiO3 perovskite as a support can effectively inhibit the sintering of CuO quantum dots at high temperatures, which is responsible for the excellent sintering and water deactivation resistances.

Keywords: catalytic combustion; combustion ch4; cuo quantum; quantum dots

Journal Title: Environmental science & technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.