LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bacterial Community under the Influence of Microplastics in Indoor Environment and the Health Hazards Associated with Antibiotic Resistance Genes.

Selectively colonized microbial communities and enriched antibiotic resistance genes (ARGs) in (micro)plastics in aquatic and soil environments make the plastisphere a great health concern. Although microplastics (MPs) are distributed in… Click to show full abstract

Selectively colonized microbial communities and enriched antibiotic resistance genes (ARGs) in (micro)plastics in aquatic and soil environments make the plastisphere a great health concern. Although microplastics (MPs) are distributed in indoor environments in high abundance, information on the effect of MPs on a microbial community in an indoor environment is lacking. Here, we detected polymers (containing MPs and natural polymers), bacterial communities, and 18 kinds of ARGs in collected indoor dust samples. A significant correlation by Procrustes analysis between bacterial community composition and the abundance of MPs was observed, and correlation tests and redundancy analysis identified specific associations between MP polymers and bacterial taxa, such as polyamide and Actinobacteria. In addition, the abundance of MPs showed a positive correlation with the relative abundance of the ARGs (to 16S RNA), while natural polymers, such as cellulosics, showed positive correlations with the absolute abundance of ARGs and 16S rRNA. Simulated experiments verified that significantly higher bacterial biomasses and ARGs were observed on the surface of cotton, hair, and wool than on MPs, while a higher relative abundance of ARGs was detected on MPs. However, a significantly higher amount of ARG was found on MPs of poly(lactic acid), the biodegradable plastics with the highest yield. In addition to the plastisphere in water and soil environments, MPs in an indoor environment may also affect the bacterial community and specifically enrich ARGs. Moreover, degradable MPs and nondegradable MPs may result in different health hazards due to their distinct effects on bacterial community.

Keywords: community; abundance; bacterial community; health; indoor environment

Journal Title: Environmental science & technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.