Tire wear particles (TWP) have been identified as one of the major sources of microplastics (MPs), and few studies have focused on their environmental behaviors and impacts. However, a thorough… Click to show full abstract
Tire wear particles (TWP) have been identified as one of the major sources of microplastics (MPs), and few studies have focused on their environmental behaviors and impacts. However, a thorough characteristic and toxicity assessment associated with environmentally persistent free radicals (EPFRs) on the photoaged TWP is missing. In this study, we investigated EPFRs in the process of TWP photoaging and evaluated their toxicity using in vitro bioassays. Our results showed that a total of around 1.0 × 1017 spins/g EPFRs (g-factors ranging 2.00308-2.00318) was formed on TWP with 60 days of light irradiation, which contained more than 29% of reactive EPFRs (r-EPFRs). Using macrophages as model cells for bioassays, TWP-associated EPFRs trigged endpoints, including the decrease of cell viability (27 to 45%) and the increase of oxidative stress response (46-93%) and inflammatory factor secretion. The enhancement of TWP toxicity with photoaging was confirmed to be attributed to the generated EPFRs combined with other TWP's chemical compositions (e.g., various metals and organics). Most importantly, the toxicity of photoaged TWP was closely correlated with the generated r-EPFRs, which induced reactive oxidant species (ROS) generation. This study provides direct evidence of toxicity on the photoaged TWP particles, revealing the potential contributions of EPFRs to the adverse effect on human health and highlighting the need for an improved understanding of the impacts of EPFRs on the risk assessment of TWP released into the environment.
               
Click one of the above tabs to view related content.