Elemental carbon (EC) from various sources contains different sub-fractions with different properties; however, this variability poses several challenges for the accurate assessment of EC emission inventory. EC is defined using… Click to show full abstract
Elemental carbon (EC) from various sources contains different sub-fractions with different properties; however, this variability poses several challenges for the accurate assessment of EC emission inventory. EC is defined using thermo-optical analysis (TOA), and its different fractions have different maturation and formation pathways. High- and low-maturity ECs have similar detection signals to those of Soot-EC and Char-EC in TOA. The emission characteristics of Soot-EC and Char-EC were affected by fuel composition and combustion temperatures. Biomass combustion generated more Char-EC than coal combustion, resulting in lower Soot-EC to Char-EC ratios. Soot-EC emissions always increased with an increasing temperature. Char-EC emissions increased with an increasing temperature at 300-900 °C in biomass combustion and decreased in coal combustion when the temperature was >600 °C, suggesting that the two ECs have different formation pathways. Time-resolved analyses of organic carbon (OC), EC, and polycyclic aromatic hydrocarbons showed that Char-EC was preferentially generated in the ignition stage with the rapid emission of OC through direct conversion of OC, whereas Soot-EC was preferentially generated during the flaming stage through gas-phase polymerization of small molecules generated from the decomposition of OC.
               
Click one of the above tabs to view related content.