LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploring Mechanisms of Biotic Chlorinated Alkane Reduction: Evidence of Nucleophilic Substitution (SN2) with Vitamin B12.

Photo by yapics from unsplash

Chlorinated alkanes are notorious groundwater contaminants. Their natural reductive dechlorination by microorganisms involves reductive dehalogenases (RDases) containing cobamide as a cofactor. However, underlying mechanisms of reductive dehalogenation have remained uncertain.… Click to show full abstract

Chlorinated alkanes are notorious groundwater contaminants. Their natural reductive dechlorination by microorganisms involves reductive dehalogenases (RDases) containing cobamide as a cofactor. However, underlying mechanisms of reductive dehalogenation have remained uncertain. Here, observed products, radical trap experiments, UV-vis, and mass spectra demonstrate that (i) reduction by cobalamin (vitamin B12) involved chloroalkyl-cobalamin complexes (ii) whose formation involved a second-order nucleophilic substitution (SN2). Dual element isotope analysis subsequently linked insights from our model system to microbial reductive dehalogenation. Identical observed isotope effects in reduction of trichloromethane by Dehalobacter CF and cobalamin (Dehalobacter CF, εC = -27.9 ± 1.7‰; εCl = -4.2 ± 0.‰; λ = 6.6 ± 0.1; cobalamin, εC = -26.0 ± 0.9‰; εCl = -4.0 ± 0.2‰; λ = 6.5 ± 0.2) indicated the same underlying mechanism, as did identical isotope effects in the reduction of 1,2-dichloroethane by Dehalococcoides and cobalamin (Dehalococcoides, εC = -33.0 ± 0.4‰; εCl = -5.1 ± 0.1‰; λ = 6.5 ± 0.2; cobalamin, εC = -32.8 ± 1.7‰; εCl = -5.1 ± 0.2‰; λ = 6.4 ± 0.2). In contrast, a different, non-SN2 reaction was evidenced by different isotope effects in reaction of 1,2-dichloroethane with Dehalogenimonas (εC = -23.0 ± 2.0‰; εCl = -12.0 ± 0.8‰; λ = 1.9 ± 0.02) illustrating a diversity of biochemical reaction mechanisms manifested even within the same class of enzymes (RDases). This study resolves open questions in our understanding of bacterial reductive dehalogenation and, thereby, provides important information on the biochemistry of bioremediation.

Keywords: cobalamin; sn2; nucleophilic substitution; substitution sn2; vitamin b12; reduction

Journal Title: Environmental science & technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.