LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A 20-Year Journey of Partial Nitritation and Anammox (PN/A): from Sidestream toward Mainstream.

Photo by quickps from unsplash

Anaerobic ammonium oxidation (anammox) was discovered as a new microbial reaction in the late 1990s, which led to the development of an innovative energy- and carbon-efficient technology─partial nitritation and anammox… Click to show full abstract

Anaerobic ammonium oxidation (anammox) was discovered as a new microbial reaction in the late 1990s, which led to the development of an innovative energy- and carbon-efficient technology─partial nitritation and anammox (PN/A)─for nitrogen removal. PN/A was first applied to remove the nitrogen from high-strength wastewaters, e.g., anaerobic digestion liquor (i.e., sidestream), and further expanded to the main line of wastewater treatment plants (i.e., mainstream). While sidestream PN/A has been well-established with extensive full-scale installations worldwide, practical application of PN/A in mainstream treatment has been proven extremely challenging to date. A key challenge is achieving stable suppression of nitrite-oxidizing bacteria (NOB). This study examines the progress of NOB suppression in both sidestream- and mainstream PN/A over the past two decades. The successful NOB suppression in sidestream PN/A was reviewed, and these successes were evaluated in terms of their transferability into mainstream PN/A. Drawing on the learning over the past decades, we anticipate that a hybrid process, comprised of biofilm and floccular sludge, bears great potential to achieve efficient mainstream PN/A, while a combination of strategies is entailed for stable NOB suppression. Furthermore, the recent discovery of novel nitrifiers would trigger new opportunities and new challenges for mainstream PN/A.

Keywords: nitritation anammox; mainstream; sidestream; partial nitritation

Journal Title: Environmental science & technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.