The oxidation of thallium [Tl(I)] to Tl(III) by chlorine (HOCl) is an important process changing its removal performance in water treatment. However, the role of bromide (Br-), a common constituent… Click to show full abstract
The oxidation of thallium [Tl(I)] to Tl(III) by chlorine (HOCl) is an important process changing its removal performance in water treatment. However, the role of bromide (Br-), a common constituent in natural water, in the oxidation behavior of Tl(I) during chlorination remains unknown. Our results demonstrated that Br- was cycled and acted as a catalyst to enhance the kinetics of Tl(I) oxidation by HOCl over the pH range of 5.0-9.5. Different Tl(I) species (i.e., Tl+ and TlOH(aq)) and reactive bromine species (i.e., HOBr/BrO-, BrCl, Br2O, and BrOCl) were kinetically relevant to the enhanced oxidation of Tl(I). The oxidation by free bromine species became the dominant pathway even at a low Br- level of 50 μg/L for a chlorine dose of 2 mg of Cl2/L. It was found that the reactions of Tl+/BrCl, Tl+/BrOCl, and TlOH(aq)/HOBr dominated the kinetics of Tl(I) oxidation at pH < 6.0, pH 6.0-8.0, and pH > 8.0, respectively. The species-specific rate constants for Tl+ reacting with individual bromine species were determined and decreased in the order: BrCl > Br2 > BrOCl > Br2O > HOBr. Overall, the presented results refine our knowledge regarding the species-specific reactivity of TI(I) with bromine species and will be useful for further prediction of thallium mobility in chlorinated waters containing bromide.
               
Click one of the above tabs to view related content.