LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Boosting Toluene Combustion by Tuning Electronic Metal-Support Interactions in In Situ Grown Pt@Co3O4 Catalysts.

Photo from wikipedia

Electronic metal-support interaction (EMSI) has attracted great attention in volatile organic compound (VOC) abatement. Herein, Pt@Co3O4 catalysts were prepared via a metal-organic framework (MOF) in situ growth approach to boost… Click to show full abstract

Electronic metal-support interaction (EMSI) has attracted great attention in volatile organic compound (VOC) abatement. Herein, Pt@Co3O4 catalysts were prepared via a metal-organic framework (MOF) in situ growth approach to boost toluene degradation. The partial electron transfer from Co3O4 to Pt species was induced by the EMSI effect to generate the electron-rich Pt and Co3+ species. The electrophilic O2 molecules could be activated by picking up the electrons from electron-rich Pt species to form nucleophilic oxygen species, which is conducive to attack C-H bonds in toluene. The redox ability and surface oxygen species activity of catalysts were improved due to strong EMSI. As expected, the excellent toluene activity was achieved, meanwhile exhibiting satisfactory water resistance and long-term stability for toluene combustion. In situ diffuse reflectance infrared Fourier transform spectroscopy results elucidated that surface lattice oxygen species should deeply participate in toluene degradation, which could be efficiently replenished by gaseous oxygen. This work may provide a new idea for exploring the relationship between the electron transfer effect and efficient catalytic performance of VOCs.

Keywords: co3o4 catalysts; co3o4; electronic metal; toluene combustion; metal support; metal

Journal Title: Environmental science & technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.