LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Capturing In Situ Glyphosate (De)sorption Kinetics in Floodplain Aquifer Sediment Columns: Geophysical Measurements and Reactive Transport Modeling.

Photo by usgs from unsplash

Glyphosate, an ionizable organic herbicide, is frequently detected in soils and groundwater globally despite its strong retention via sorption. Understanding its apparent mobility hinges on our ability to quantify its… Click to show full abstract

Glyphosate, an ionizable organic herbicide, is frequently detected in soils and groundwater globally despite its strong retention via sorption. Understanding its apparent mobility hinges on our ability to quantify its system-specific sorption behavior, hindered by its affinity to adsorb onto sediments, yielding very low aqueous concentrations. Here, we present findings from a saturated flow-through column experiment in which we monitored glyphosate sorption onto a natural calcareous aquifer sediment, using the noninvasive geophysical method spectral induced polarization (SIP). Our kinetic sorption reactive transport model predicted the strong nonlinear reversible retention of glyphosate and reproduced the spatial profile of retained glyphosate in the sediment, with a measured maximum of 0.06 mg g-1. The strong contribution of sorption to pore fluid conduction masked the expected variations in imaginary conductivity, σ″. However, time constants derived from a Cole-Cole model matched the timing and spatial distribution of model-predicted sorbed concentration changes, increasing from 0.8 × 10-3 to 1.7 × 10-3 s with an increase in sorbed glyphosate of 0.1 mg g-1. Thus, glyphosate sorption modified the surface charging properties of the sediment proportional to the solid-bound concentrations. Our findings link SIP signal variations to sorption dynamics and provide a framework for improved monitoring of charged organic contaminants in natural sediments.

Keywords: glyphosate sorption; sorption; aquifer sediment; reactive transport

Journal Title: Environmental science & technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.