LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Incorporating Oxygen Atoms in a SnS2 Atomic Layer to Simultaneously Stabilize Atomic Hydrogen and Accelerate the Generation of Hydroxyl Radicals for Water Decontamination.

Photo from wikipedia

Photoelectrocatalysis (PEC) is an efficient way to address various pollutants. Surface-adsorbed atomic hydrogen (H*) and hydroxyl radicals (•OH) play a key role in the PEC process. However, the instability of… Click to show full abstract

Photoelectrocatalysis (PEC) is an efficient way to address various pollutants. Surface-adsorbed atomic hydrogen (H*) and hydroxyl radicals (•OH) play a key role in the PEC process. However, the instability of H* and low production of •OH considerably limit the PEC efficiency. In this study, we noted that incorporating oxygen atoms could regulate the behavior of H* by creating a locally favorable electron-rich state of S atoms in the SnS2 catalyst. The finely modulated H* led to a 12-fold decrease in the overpotential of H2O2 generation (H*-OOH*-H2O2-•OH) by decreasing the activation energy barrier of OOH* (rate-determining step). Considering density functional theory calculations, an H*-•OH redox pair suitable for a wide pH range (3-11) was successfully constructed based on the photocathode. The optimal SnS1.85O0.15 AL@TNA photocathode exhibited a ∼90% reduction in Cr(VI) in 10 min and ∼70% TOC removal of 4-nitrophenol, nearly 2- and 3-fold higher than that without oxygen incorporation. Electron spin resonance spectrometry and radical quenching experiments verified that H* and the derived •OH via 1-electron and 3-electron reduction were the main active species. Operando Raman spectroscopy confirmed that the stable SnO2 phase helped constantly activate the production of H* and •OH.

Keywords: hydroxyl radicals; incorporating oxygen; atomic hydrogen; atoms sns2; oxygen; oxygen atoms

Journal Title: Environmental science & technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.