LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stormwater Bioretention Cells Are Not an Effective Treatment for Persistent and Mobile Organic Compounds (PMOCs).

Photo by itfeelslikefilm from unsplash

Bioretention cells are a stormwater management technology intended to reduce the quantity of water entering receiving bodies. They are also used to reduce contaminant releases, but their performance is unclear… Click to show full abstract

Bioretention cells are a stormwater management technology intended to reduce the quantity of water entering receiving bodies. They are also used to reduce contaminant releases, but their performance is unclear for hydrophilic persistent and mobile organic compounds (PMOCs). We developed a novel eight-compartment one-dimensional (1D) multimedia model of a bioretention cell ("Bioretention Blues") and applied it to a spike and recovery experiment conducted on a system near Toronto, Canada, involving PMOC benzotriazole and four organophosphate esters (OPEs). Compounds with (log DOC) (organic carbon-water distribution coefficients) < ∼2.7 advected through the system, resulting in infiltration or underdrain flow. Compounds with log DOC > 3.8 were mostly sorbed to the soil, where subsequent fate depended on transformation. For compounds with 2.7 ≤ log DOC ≤ 3.8, sorption was sensitive to event size and compound-specific diffusion parameters, with more sorption expected for smaller rain events and for compounds with larger diffusion coefficients. Volatilization losses were minimal for all compounds tested. Direct uptake by vegetation also played a negligible role regardless of the compounds' physicochemical properties. Nonetheless, model simulations showed that vegetation could play a role by increasing transpiration, thereby increasing sorption to the bioretention soil and reducing PMOC release. Model results suggest design modifications to bioretention cells.

Keywords: organic compounds; persistent mobile; bioretention cells; bioretention; compounds pmocs; mobile organic

Journal Title: Environmental science & technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.