LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Palladium (Pd0) Loading-Controlled Catalytic Activity and Selectivity for Chlorophenol Hydrodechlorination and Hydrosaturation.

Photo by flairman from unsplash

Reductive catalysis by zero-valent palladium nanoparticles (Pd0NPs) has emerged as an efficient strategy for promoting the detoxification of chlorophenols (CPs) via hydrogenation. Most studies achieved hydrodechlorination of CP to phenol… Click to show full abstract

Reductive catalysis by zero-valent palladium nanoparticles (Pd0NPs) has emerged as an efficient strategy for promoting the detoxification of chlorophenols (CPs) via hydrogenation. Most studies achieved hydrodechlorination of CP to phenol for detoxification, but it requires considerably high energy input and harsh conditions to further hydrosaturate phenol to cyclohexanone (CHN) as the most desired product for resource recovery. This study documented 4-CP hydrodechlorination and hydrosaturation catalyzed by Pd0NPs deposited on H2-transfer membranes in the H2-based membrane catalyst-film reactor, which yielded up to 99% CHN selectivity under ambient conditions. It was further discovered that the Pd0 morphology and size, both determined by Pd0 loading, were the key factors controlling the catalytic activity and selectivity: while sub-nano Pd particles catalyzed only 4-CP hydrodechlorination, Pd0NPs were able to catalyze the subsequent hydrosaturation that requires more Pd0 reactive sites than hydrodechlorination. In addition, better dispersion of Pd0, caused by lower Pd0 loading, yielded higher activity for hydrodechlorination but lower activity for hydrosaturation. During the 15 day continuous tests, the substantial product from 4-CP hydrogenation was constantly phenol (>98%) for 0.2 g-Pd/m2 and CHN (>92%) for 1.0 g-Pd/m2. This study opens the door for selectively manipulating desired products from Pd0-catalyzed CP hydrogenation under ambient conditions.

Keywords: pd0 loading; hydrosaturation; selectivity; hydrodechlorination; activity

Journal Title: Environmental science & technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.