LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

SO2- and H2O-Tolerant Catalytic Reduction of NOx at a Low Temperature via Engineering Polymeric VOx Species by CeO2.

Photo from wikipedia

Selective catalytic reduction (SCR) of NOx over V2O5-based oxide catalysts has been widely used, but it is still a challenge to efficiently reduce NOx at low temperatures under SO2 and… Click to show full abstract

Selective catalytic reduction (SCR) of NOx over V2O5-based oxide catalysts has been widely used, but it is still a challenge to efficiently reduce NOx at low temperatures under SO2 and H2O co-existence. Herein, SO2- and H2O-tolerant catalytic reduction of NOx at a low temperature has been originally demonstrated via engineering polymeric VOx species by CeO2. The polymeric VOx species were tactfully engineered on Ce-V2O5 composite active sites via the surface occupation effect of Ce, and the obtained catalysts exhibited remarkable low-temperature activity and strong SO2 and H2O tolerance at 250 °C. The strong interaction between Ce and V species induced the electron transfer from V to Ce and tuned the SCR reaction via the E-R pathway between the NH4+/NH3 species and gaseous NO. In the presence of SO2 and H2O, the polymeric VOx species had not been hardly influenced, while the formation of sulfate species on Ce sites not only promoted the adsorption of NH4+ species and the reaction between gaseous NO and NH4+ but also facilitated the decomposition of ammonium bisulfate through weakening the strong bond between HSO4- and NH4+. This work provided a new strategy for SO2- and H2O-tolerant catalytic reduction of NOx at a low temperature.

Keywords: low temperature; so2 h2o; polymeric vox; nox low; catalytic reduction; vox species

Journal Title: Environmental science & technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.