Particle-bound mercury (HgP), ubiquitously present in aquatic environments, can be methylated into highly toxic methylmercury, but it remains challenging to assess its bioavailability. In this study, we developed anEscherichia coli-based… Click to show full abstract
Particle-bound mercury (HgP), ubiquitously present in aquatic environments, can be methylated into highly toxic methylmercury, but it remains challenging to assess its bioavailability. In this study, we developed anEscherichia coli-based whole-cell biosensor to probe the microbial uptake of inorganic Hg(II) and assess the bioavailability of HgP sorbed on natural and model particles. This biosensor can quantitatively distinguish the contribution of dissolved Hg(II) and HgP to intracellular Hg. Results showed that the microbial uptake of HgP was ubiquitous in the environment, as evidenced by the bioavailability of sorbed-Hg(II) onto particulate matter and model particles (Fe2O3, Fe3O4, Al2O3, and SiO2). In both oxic and anoxic environments, HgP was an important Hg(II) source for microbial uptake, with enhanced bioavailability under anoxic conditions. The composition of particles significantly affected the microbial uptake of HgP, with higher bioavailability being observed for Fe2O3 and lower for Al2O3 particles. The bioavailability of HgP varied also with the size of particles. In addition, coating with humic substances and model organic compound (cysteine) on Fe2O3 particles decreased the bioavailability of HgP. Overall, our findings highlight the role of HgP in Hg biogeochemical cycling and shed light on the enhanced Hg-methylation in settling particles and sediments in aquatic environments.
               
Click one of the above tabs to view related content.