LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New Insight into a Fenton-like Reaction Mechanism over Sulfidated β-FeOOH: Key Role of Sulfidation in Efficient Iron(III) Reduction and Sulfate Radical Generation.

Photo by picasso_the_line_art from unsplash

Sulfidation can greatly improve the efficiency of utilization of reducing equivalents for contaminant removal; however, whether this method benefits Fenton-like reactions or not and the possible mechanism are not well… Click to show full abstract

Sulfidation can greatly improve the efficiency of utilization of reducing equivalents for contaminant removal; however, whether this method benefits Fenton-like reactions or not and the possible mechanism are not well understood. In this study, we revealed that surface sulfidation can greatly promote the heterogeneous Fenton activity of β-FeOOH (Fe3S4@β-FeOOH) by 40 times, in which not only the •OH formation was enhanced but also SO4•- as a new oxidation species was generated. Moreover, their contribution to metronidazole (MTZ) degradation was 52.5 and 37.1%, respectively. In comparison, almost no HO2•/O2•- was detected in the Fe3S4@β-FeOOH/H2O2 system. These results were different from some previously reported Fenton counterparts. Based on the characterization and probe experiments, sulfur species, including S2-, S0, and Sn2-, as an electron donor and electron shuttle were responsible for efficient conversion of Fe(III) into Fe(II) other than via the Haber-Weiss mechanism, leading to excellent •OH generation via a Fenton-like mechanism. Most importantly, HSO5- can be generated from SO32- oxidized by •OH, and its scission into SO4•- was not dependent on the extra electric potential or Fe-O2-S(IV) intermediate. These findings provided new insight for utilizing sulfidation to improve the activity of iron-based Fenton catalysts.

Keywords: fenton; fenton like; iii; mechanism; sulfidation; new insight

Journal Title: Environmental science & technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.