LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stochastic LCA Model of Upscaling the Production of Microalgal Compounds.

Photo by thinkmagically from unsplash

Microalgae are currently being investigated for their promising metabolites but assessing the environmental impact of producing these compounds remains a challenge. Microalgae cultivation performance results from the complex interaction of… Click to show full abstract

Microalgae are currently being investigated for their promising metabolites but assessing the environmental impact of producing these compounds remains a challenge. Microalgae cultivation performance results from the complex interaction of biological, technological, geographical, and physical factors, which bioengineers try to optimize during the upscaling process. The path from the discovery of a microalgal compound to its industrial production is therefore highly uncertain. Nonetheless, it is key to anticipate the potential environmental impacts associated with the future production of a microalgal target compound. This is achieved in this study by developing an ex-ante, parameterized, and consequential LCA model that performs dynamic simulations of microalgae cultivation. The model is applied to calculate the environmental impacts of 9000 stochastically generated combinations of photobioreactor geometries and operational setups. The demonstration of the model is done for a fictive microalgal strain, parameterized to resemble Chlorella vulgaris, and a fictive target compound assumed to be a carbohydrate. The simulations are performed in Aalborg, Denmark, and Granada, Spain to appreciate geographical variability, which highly affects the requirements for thermoregulation. Open-source documentation allows full reproducibility and further use of the model for the ex-ante assessment of microalgal products.

Keywords: production microalgal; lca model; stochastic lca; production; model

Journal Title: Environmental science & technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.