LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nitrogen Vacancy-Modulated Peroxymonosulfate Nonradical Activation for Organic Contaminant Removal via High-Valent Cobalt-Oxo Species.

Photo by bostonpubliclibrary from unsplash

Rapid generation of high-valent cobalt-oxo species (Co(IV)═O) for the removal of organic contaminants has been challenging because of the low conversion efficiency of Co(III)/Co(II) and the high activation energy barrier… Click to show full abstract

Rapid generation of high-valent cobalt-oxo species (Co(IV)═O) for the removal of organic contaminants has been challenging because of the low conversion efficiency of Co(III)/Co(II) and the high activation energy barrier of the Co(II)-oxidant complex. Herein, we introduced nitrogen (N) vacancies into graphite carbon nitride imbedded with cobalt carbonate (CCH/CN-Vn) in a peroxymonosulfate (PMS)/visible light system to break the limitations of a conventional two-electron transfer path. These N vacancies enhanced the electron distribution of the Co 3d orbital and lowered the energy barrier to cleave the O-O bond of PMS in the Co(II)-PMS complex, achieving the modulation of major active species from 1O2 to Co(IV)═O. The developed synergistic system that exhibited adsorption and oxidation showed remarkable selectivity and contaminant removal performance in inorganic (Cl-, NO3-, HCO3-, and HPO4-) organic (HA) and even practical aqueous matrices (tap water and secondary effluent). This study provides a novel mechanistic perspective to modulate the nonradical path for refractory contaminant treatment via defect engineering.

Keywords: oxo species; cobalt; contaminant removal; cobalt oxo; high valent; valent cobalt

Journal Title: Environmental science & technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.