LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reduced Graphene Oxide Triggers Peracetic Acid Activation for Robust Removal of Micropollutants: The Role of Electron Transfer.

Photo from wikipedia

Peracetic acid (PAA) serves as a potent and low-toxic oxidant for contaminant removal. Radical-mediated catalytic PAA oxidation processes are typically non-selective, rendering weakened oxidation efficacy under complex water matrices. Herein,… Click to show full abstract

Peracetic acid (PAA) serves as a potent and low-toxic oxidant for contaminant removal. Radical-mediated catalytic PAA oxidation processes are typically non-selective, rendering weakened oxidation efficacy under complex water matrices. Herein, we explored the usage of reduced graphene oxide (rGO) for PAA activation via a non-radical pathway. Outperforming the most catalytic PAA oxidation systems, the rGO-PAA system exhibits near-complete removal of typical micropollutants (MPs) within a short time (<2 min). Non-radical direct electron transfer (DET) from MPs to PAA plays a decisive role in the MP degradation, where accelerated DET is achieved by a higher potential of the rGO-PAA reactive surface complexes. Benefitting from DET, the rGO-PAA system shows robust removal of multiple MPs under complex water matrices and with low toxicity. Notably, in the DET regime, the electrostatic attraction of rGO to both PAA and target MP is a critical prerequisite for achieving efficient oxidation, depending on the conditions of solution pH and MP pKa. A heatmap model building on such an electrostatic interaction is further established as guidance for regulating the performance of the DET-mediated PAA oxidation systems. Overall, our work unveils the imperative role of DET for rGO-activated PAA oxidation, expanding the knowledge of PAA-based water treatment strategies.

Keywords: oxidation; role; paa; removal; rgo paa

Journal Title: Environmental science & technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.