LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigating Changes in Ozone Formation Chemistry during Summertime Pollution Events over the Northeastern United States

Photo by trnavskauni from unsplash

Understanding the local-scale spatial and temporal variability of ozone formation is crucial for effective mitigation. We combine tropospheric vertical column densities (VCDTrop) of formaldehyde (HCHO) and nitrogen dioxide (NO2), referred… Click to show full abstract

Understanding the local-scale spatial and temporal variability of ozone formation is crucial for effective mitigation. We combine tropospheric vertical column densities (VCDTrop) of formaldehyde (HCHO) and nitrogen dioxide (NO2), referred to as HCHO-VCDTrop and NO2-VCDTrop, retrieved from airborne remote sensing and the TROPOspheric Monitoring Instrument (TROPOMI) with ground-based measurements to investigate changes in ozone precursors and the inferred chemical production regime on high-ozone days in May–August 2018 over two Northeast urban domains. Over New York City (NYC) and Baltimore/Washington D.C. (BAL/DC), HCHO-VCDTrop increases across the domain, but higher NO2-VCDTrop occurs mainly in urban centers on ozone exceedance days (when maximum daily 8 h average (MDA8) ozone exceeds 70 ppb at any monitor in the region). The ratio of HCHO-VCDTrop to NO2-VCDTrop, proposed as an indicator of the sensitivity of local surface ozone production rates to its precursors, generally increases on ozone exceedance days, implying a transition toward a more NOx-sensitive ozone production regime that should lead to higher efficacy of NOx controls on the highest ozone days in NYC and BAL/DC. Warmer temperatures and enhanced influence from emissions in the local boundary layer on the high-ozone days are accompanied by slower wind speeds in BAL/DC but stronger, southwesterly winds in NYC.

Keywords: vcdtrop; chemistry; ozone; ozone formation; changes ozone

Journal Title: Environmental Science & Technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.