LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Insights into the Dermal Absorption, Deposition, and Elimination of Poly- and Perfluoroalkyl Substances in Rats: The Importance of Skin Exposure.

Photo by curology from unsplash

Humans are frequently exposed to poly- and perfluoroalkyl substances (PFASs) via direct skin contact with personal care and consumer products containing them. Here, we used a rat model to estimate… Click to show full abstract

Humans are frequently exposed to poly- and perfluoroalkyl substances (PFASs) via direct skin contact with personal care and consumer products containing them. Here, we used a rat model to estimate the dermal penetration efficiency of 15 representative PFASs. After 144 h post-dosing, 4.1-18.0 and 5.3-15.1% of the applied PFASs in the low (L) and high (H) groups, respectively, were absorbed into the rats. PFAS absorption and permeation were parabolically associated with the perfluorinated carbon chain length (CF), peaking for perfluoroheptanoic acid (PFHpA). The lipid-rich stratum corneum of the skin barrier substantially suppressed the penetration of less hydrophobic short-chain PFASs, whereas the water-rich viable epidermis and dermis served as obstacles to hydrophobic long-chain PFAS permeation. However, the renal clearance (CLrenal) of the target PFAS decreased with increasing CF, suggesting that urinary excretion is crucial to eliminate less hydrophobic short-chain PFASs. Notably, the peak times of PFASs in the systemic circulation of rats (8-72 h) were remarkably longer than those after oral administration (1-24 h). These results suggest that dermal penetration can be long-lasting and contribute considerably to the body burden of PFASs, especially for those with moderate hydrophobicity due to their favorable skin permeation and unfavorable urinary excretion.

Keywords: perfluoroalkyl substances; poly perfluoroalkyl; skin; pfass

Journal Title: Environmental science & technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.