Over the last 30 years, the optical property community has shifted from conducting dissolved organic matter (DOM) measurements on new complex mixtures in natural and engineered systems to furthering ecosystem… Click to show full abstract
Over the last 30 years, the optical property community has shifted from conducting dissolved organic matter (DOM) measurements on new complex mixtures in natural and engineered systems to furthering ecosystem understanding in the context of past, present, and future carbon (C) cycling regimes. However, the appropriate use of optical properties to understand DOM behavior in complex biogeochemical systems is of recent debate. This critical review provides an extensive survey of DOM optical property literature across atmospheric, marine, and terrestrial biospheres using a categorical approach that probes each biosphere and its subdivisions. Using this approach, a rubric of ecosystem variables, such as productive nature, C cycling rate, C inputs, and water quality, sets the foundation for interpreting commonly used optical property DOM metrics such as fluorescence index (FI), humification index (HIX), and specific ultraviolet absorbance at 254 nm (SUVA254). Case studies and a meta-analysis of each biosphere and subdivision found substantial overlap and characteristic distributions corresponding to ecosystem context for FI, HIX, and SUVA254, signifying chromophores and fluorophores from different ecosystems may be more similar than originally thought. This review challenges researchers to consider ecosystem connectivity when applying optical property results rather than making traditional “if this, then that” results-style conclusions.
               
Click one of the above tabs to view related content.