LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Energy Barriers for Steroid Hormone Transport in Nanofiltration.

Photo from wikipedia

Nanofiltration (NF) membranes can retain micropollutants (MPs) to a large extent, even though adsorption into the membrane and gradual permeation result in breakthrough and incomplete removal. The permeation of MPs… Click to show full abstract

Nanofiltration (NF) membranes can retain micropollutants (MPs) to a large extent, even though adsorption into the membrane and gradual permeation result in breakthrough and incomplete removal. The permeation of MPs is investigated by examining the energy barriers (determined using the Arrhenius concept) for adsorption, intrapore diffusion, and permeation encountered by four different steroid hormones in tight and loose NF membranes. Results show that the energy barriers for steroid hormone transport in tight membrane are entropically dominated and underestimated because of the high steric exclusion at the pore entrance. In contrast, the loose NF membrane enables steroid hormones partitioning at the pore entrance, with a permeation energy barrier (from feed toward the permeate side) ranging between 96 and 116 kJ/mol. The contribution of adsorption and intrapore diffusion to the energy barrier for steroid hormone permeation reveals a significant role of intrapore diffusive transport on the obtained permeation energy barrier. Overall, the breakthrough phenomenon observed during the NF of MPs is facilitated by the low energy barrier for adsorption. Experimental evidence of such principles is relevant for understanding mechanisms and ultimately improving the selectivity of NF.

Keywords: energy barriers; energy; permeation; transport; steroid hormone

Journal Title: Environmental science & technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.