LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Breakdown and Modification of Microplastic Beads by Aeolian Abrasion

Photo from wikipedia

Saltation is an important wind erosion process that can cause the modification and breakdown of particles by aeolian abrasion. It is recognized that microplastic particles can be transported by wind,… Click to show full abstract

Saltation is an important wind erosion process that can cause the modification and breakdown of particles by aeolian abrasion. It is recognized that microplastic particles can be transported by wind, but the effect of saltation on microplastic properties is unknown. This study examined the impact of simulated saltation alongside quartz grains on the size, shape, and surface properties of spherical microplastic beads. The diameter of the microplastics was reduced by 30–50% over 240–300 h of abrasion with a mass loss of c. 80%. For abrasion periods up to 200 h, the microplastic beads remained spherical with minimal change to overall shape. Over 95% of the fragments of plastic removed from the surface of the microbeads during the abrasion process had a diameter of ≤10 μm. In addition, during the abrasion process, fine particles derived from breakdown of the quartz grains became attached to the surfaces of the microbeads resulting in a reduction in carbon and an increase in silicon detected on the particle surface. The results suggest that microplastics may be mechanically broken down during aeolian saltation and small fragments produced have the potential for long distance transport as well as being within the size range for human respiration.

Keywords: saltation; aeolian abrasion; breakdown modification; microplastic beads; abrasion

Journal Title: Environmental Science & Technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.