LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bacterial Communication Coordinated Behaviors of Whole Communities to Cope with Environmental Changes.

Photo from wikipedia

Bacterial communication plays an important role in coordinating microbial behaviors in a community. However, how bacterial communication organizes the entire community for anaerobes to cope with varied anaerobic-aerobic conditions remains… Click to show full abstract

Bacterial communication plays an important role in coordinating microbial behaviors in a community. However, how bacterial communication organizes the entire community for anaerobes to cope with varied anaerobic-aerobic conditions remains unclear. We constructed a local bacterial communication gene (BCG) database comprising 19 BCG subtypes and 20279 protein sequences. BCGs in anammox-partial nitrification consortia coping with intermittent aerobic and anaerobic conditions as well as gene expressions of 19 species were inspected. We found that when suffering oxygen changes, intra- and interspecific communication by a diffusible signal factor (DSF) and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) changed first, which in turn induced changes of autoinducer-2 (AI-2)-based interspecific and acyl homoserine lactone (AHLs)-based intraspecific communication. DSF and c-di-GMP-based communication regulated 455 genes, which covered 13.64% of the genomes and were mainly involved in antioxidation and metabolite residue degradation. For anammox bacteria, oxygen influenced DSF and c-di-GMP-based communication through RpfR to upregulate antioxidant proteins, oxidative damage-repairing proteins, peptidases, and carbohydrate-active enzymes, which benefited their adaptation to oxygen changes. Meanwhile, other bacteria also enhanced DSF and c-di-GMP-based communication by synthesizing DSF, which helped anammox bacteria survive at aerobic conditions. This study evidences the role of bacterial communication as an "organizer" within consortia to cope with environmental changes and sheds light on understanding bacterial behaviors from the perspective of sociomicrobiology.

Keywords: cope environmental; communication; gmp based; environmental changes; bacterial communication; dsf gmp

Journal Title: Environmental science & technology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.