The octanol/air partition coefficient Koa is important for assessing the bioconcentration of airborne xenobiotics in foliage and in air-breathing organisms. Moreover, Koa informs about compound partitioning to aerosols and indoor… Click to show full abstract
The octanol/air partition coefficient Koa is important for assessing the bioconcentration of airborne xenobiotics in foliage and in air-breathing organisms. Moreover, Koa informs about compound partitioning to aerosols and indoor dust, and complements the octanol/water partition coefficient Kow and the air/water partition coefficient Kaw for multimedia fate modeling. Experimental log Koa at 25 °C has been collected from literature for 2161 compounds with molecular weights from 16 to 959 Da. The curated data set covers 18.2 log units (from -1.0 to 17.2). A newly developed fragment model for predicting log Koa from molecular structure outperforms COSMOtherm, EPI-Suite KOAWIN, OPERA, and linear solvation energy relationships (LSERs) regarding the root-mean-squared error (rms) and the maximum negative and positive errors (mne and mpe) (rms: 0.57 vs 0.86 vs 1.09 vs 1.19 vs 1.05-1.53, mne: -2.55 vs -3.95 vs -7.51 vs -7.54 vs (-5.63) - (-7.34), mpe: 2.91 vs 5.97 vs 7.54 vs 4.24 vs 6.89-10.2 log units). The prediction capability, statistical robustness, and sound mechanistic basis are demonstrated through initial separation into a training and prediction set (80:20%), mutual leave-50%-out validation, and target value scrambling in terms of temporarily wrong compound-Koa allocations. The new general-purpose model is implemented in a fully automatized form in the ChemProp software available to the public. Regarding Koa indirectly determined through Kow and Kaw, a new approach is developed to convert from wet to dry octanol, enabling higher consistency in experimental (and thus also predicted) Koa.
               
Click one of the above tabs to view related content.