LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Economical and Sustainable Synthesis of Small-Pore Chabazite Catalysts for NOx Abatement by Recycling Organic Structure-Directing Agents.

Photo from wikipedia

The application of small-pore chabazite-type SSZ-13 zeolites, key materials for the reduction of nitrogen oxides (NOx) in automotive exhausts and the selective conversion of methane, is limited by the use… Click to show full abstract

The application of small-pore chabazite-type SSZ-13 zeolites, key materials for the reduction of nitrogen oxides (NOx) in automotive exhausts and the selective conversion of methane, is limited by the use of expensive N,N,N-trimethyl-1-ammonium adamantine hydroxide (TMAdaOH) as an organic structure-directing agent (OSDA) during hydrothermal synthesis. Here, we report an economical and sustainable route for SSZ-13 synthesis by recycling and reusing the OSDA-containing waste liquids. The TMAdaOH concentration in waste liquids, determined by a bromocresol green colorimetric method, was found to be a key factor for SSZ-13 crystallization. The SSZ-13 zeolite synthesized under optimized conditions demonstrates similar physicochemical properties (surface area, porosity, crystallinity, Si/Al ratio, etc.) as that of the conventional synthetic approach. We then used the waste liquid-derived SSZ-13 as the parent zeolite to synthesize Cu ion-exchanged SSZ-13 (i.e., Cu-SSZ-13) for ammonia-mediated selective catalytic reduction of NOx (NH3-SCR) and observed a higher activity as well as better hydrothermal stability than Cu-SSZ-13 by conventional synthesis. In situ infrared and ultraviolet-visible spectroscopy investigations revealed that the superior NH3-SCR performance of waste liquid-derived Cu-SSZ-13 results from a higher density of Cu2+ sites coordinated to paired Al centers on the zeolite framework. The technoeconomic analysis highlights that recycling OSDA-containing waste liquids could reduce the raw material cost of SSZ-13 synthesis by 49.4% (mainly because of the higher utilization efficiency of TMAdaOH) and, meanwhile, the discharging of wastewater by 45.7%.

Keywords: organic structure; small pore; waste; pore chabazite; structure directing; synthesis

Journal Title: Environmental science & technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.