LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Natural Solar Irradiation Produces Fluorescent and Biodegradable Nanoplastics.

Nanoplastics (NPs) have raised global concern owing to their potential health effects. Herein, after simulated and natural solar irradiation, polyethylene, polypropylene, polystyrene, and poly(vinyl chloride) nanoplastics (PVC NPs) were observed… Click to show full abstract

Nanoplastics (NPs) have raised global concern owing to their potential health effects. Herein, after simulated and natural solar irradiation, polyethylene, polypropylene, polystyrene, and poly(vinyl chloride) nanoplastics (PVC NPs) were observed to exhibit enhanced fluorescence, particularly PVC NPs. Furthermore, the role of photoaged NPs as a potential fluorescence indicator was evaluated by exposing a model aquatic organism Daphnia magna to these NPs. Our results revealed that photoaged NPs exhibited strong fluorescence owing to the generation of conjugated π bonds, which can achieve π-π* electron transition with low energy consumption. Photogenerated fluorescence also enabled the photoaged NPs to act as efficient fluorescent tracers, which can help track NP migration in various organisms. The results of two-photon laser confocal scanning microscopy revealed that the photoaged NPs could translocate across biological barriers and accumulate in extraintestinal tissues in addition to being ingested and excreted. Moreover, compared with pristine NPs, the photoaged NPs underwent biodegradation more easily, probably because of increased hydrophilicity due to photogenerated oxygen-containing moieties. Therefore, in addition to producing fluorescent NPs without the attachment of external fluorescent dyes, the natural photoaging process can promote the migration and degradation of photoaged NPs in food chains.

Keywords: photoaged nps; irradiation produces; solar irradiation; fluorescence; natural solar

Journal Title: Environmental science & technology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.