LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Boosting CO Catalytic Oxidation Performance via Highly Dispersed Copper Atomic Clusters: Regulated Electron Interaction and Reaction Pathways.

Photo by cdc from unsplash

Copper-loaded ceria (Cu/CeO2) catalysts have become promising for the catalytic oxidation of industrial CO emissions. Since their superior redox property mainly arises from the synergistic effect between Cu and the… Click to show full abstract

Copper-loaded ceria (Cu/CeO2) catalysts have become promising for the catalytic oxidation of industrial CO emissions. Since their superior redox property mainly arises from the synergistic effect between Cu and the CeO2 support, the dispersion state of Cu species may dominate the catalytic performance of Cu/CeO2 catalysts: the extremely high or low dispersity is disadvantageous for the catalytic performance. The nanoparticle catalysts usually present few contact sites, while the single-atom catalysts tend to be passivated due to their relatively single valence state. To achieve a suitable dispersion state, we synthesized a superior Cu/CeO2 catalyst with Cu atomic clusters, realizing high atomic exposure and unit atomic activity simultaneously via favorable electron interaction and an anchoring effect. The catalyst reaches a 90% CO conversion at 130 °C, comparable to noble-metal catalysts. According to combined in situ spectroscopy and density functional theory calculations, the superior CO oxidation performance of the Cu atomic cluster catalyst results from the joint efforts of effective adsorption of CO at the electrophilic sites, the CO spillover phenomenon, and the efficient bicarbonate pathway triggered by hydroxyl. By providing a superior atomic cluster catalyst and uncovering the catalytic oxidation mechanism of Cu-Ce dual-active sites, our work may enlighten future research on industrial gaseous pollutant removal.

Keywords: oxidation; atomic clusters; electron interaction; catalytic oxidation; performance; oxidation performance

Journal Title: Environmental science & technology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.