LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Selective Extraction of Critical Metals from Spent Lithium-Ion Batteries.

Photo from wikipedia

Selective and highly efficient extraction technologies for the recovery of critical metals including lithium, nickel, cobalt, and manganese from spent lithium-ion battery (LIB) cathode materials are essential in driving circularity.… Click to show full abstract

Selective and highly efficient extraction technologies for the recovery of critical metals including lithium, nickel, cobalt, and manganese from spent lithium-ion battery (LIB) cathode materials are essential in driving circularity. The tailored deep eutectic solvent (DES) choline chloride-formic acid (ChCl-FA) demonstrated a high selectivity and efficiency in extracting critical metals from mixed cathode materials (LiFePO4:Li(NiCoMn)1/3O2 mass ratio of 1:1) under mild conditions (80 °C, 120 min) with a solid-liquid mass ratio of 1:200. The leaching performance of critical metals could be further enhanced by mechanochemical processing because of particle size reduction, grain refinement, and internal energy storage. Furthermore, mechanochemical reactions effectively inhibited undesirable leaching of nontarget elements (iron and phosphorus), thus promoting the selectivity and leaching efficiency of critical metals. This was achieved through the preoxidation of Fe and the enhanced stability of iron phosphate framework, which significantly increased the separation factor of critical metals to nontarget elements from 56.9 to 1475. The proposed combination of ChCl-FA extraction and the mechanochemical reaction can achieve a highly selective extraction of critical metals from multisource spent LIBs under mild conditions.

Keywords: selective extraction; critical metals; extraction; spent lithium; lithium ion; extraction critical

Journal Title: Environmental science & technology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.