LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Competitive Reactions during Ethanol Chain Elongation Were Temporarily Suppressed by Increasing Hydrogen Partial Pressure through Methanogenesis Inhibition

Photo from wikipedia

Organic waste streams can be converted into high-value platform chemicals such as medium-chain carboxylic acids (MCCAs) using mixed microbial communities via chain elongation. However, the heterogeneity of waste streams and… Click to show full abstract

Organic waste streams can be converted into high-value platform chemicals such as medium-chain carboxylic acids (MCCAs) using mixed microbial communities via chain elongation. However, the heterogeneity of waste streams and the use of complex microbial communities can lead to undesirable reactions, thus decreasing process efficiency. We explored suppressing excessive ethanol oxidation to acetate (EEO) by increasing the hydrogen partial pressure (PH2) through hydrogenotrophic methanogenesis inhibition by periodically adding 2-bromoethanesulfonate (2-BES) to an MCCA-producing bioreactor to reach 10 mM of 2-BES upon addition. The bioreactor was fed with pretreated food waste and brewery waste containing high concentrations of short-chain carboxylic acids and ethanol, respectively. While 2-BES addition initially reduced EEO, some methanogens (Methanobrevibacter spp.) persisted and resistant populations were selected over time. Besides changing the methanogenic community structure, adding 2-BES also changed the bacterial community structure due to its impact on PH2. While we demonstrated that PH2 could be manipulated using 2-BES to control EEO, methods that do not require the addition of a chemical inhibitor should be explored to maintain optimum PH2 for long-term suppression of EEO.

Keywords: hydrogen partial; methanogenesis inhibition; increasing hydrogen; partial pressure; chain elongation; chain

Journal Title: Environmental Science & Technology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.