LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improved Electronic Structure from Spin-State Reconstruction of a Heteronuclear Fe-Co Diatomic Pair to Boost the Fenton-like Reaction.

Photo by chrisbair from unsplash

Dual-atom catalysts (DACs) are promising candidates for various catalytic reactions, including electrocatalysis, chemical synthesis, and environmental remediation. However, the high-activity origin and mechanism underlying intrinsic activity enhancement remain elusive, especially… Click to show full abstract

Dual-atom catalysts (DACs) are promising candidates for various catalytic reactions, including electrocatalysis, chemical synthesis, and environmental remediation. However, the high-activity origin and mechanism underlying intrinsic activity enhancement remain elusive, especially for the Fenton-like reaction. Herein, we systematically compared the catalytic performance of dual-atom FeCo-N/C with its single-atom counterparts by activating peroxymonosulfate (PMS) for pollutant abatement. The unusual spin-state reconstruction on FeCo-N/C is demonstrated to effectively improve the electronic structure of Fe and Co in the d orbital and enhance the PMS activation efficiency. Accordingly, the dual-atom FeCo-N/C with an intermediate-spin state remarkably boosts the Fenton-like reaction by almost 1 order of magnitude compared with low-spin Co-N/C and high-spin Fe-N/C. Moreover, the established dual-atom-activated PMS system also exhibits excellent stability and robust resistance against harsh conditions. Combined theoretical calculations reveal that unlike unitary Co atom or Fe atom transferring electrons to the PMS molecule, the Fe atom of FeCo-N/C provides extra electrons to the neighboring Co atom and positively shifts the d band of the Co center, thereby optimizing the PMS adsorption and decomposition into a unique high-valent FeIV-O-CoIV species via a low-energy barrier pathway. This work advances a conceptually novel mechanistic understanding of the enhanced catalytic activity of DACs in Fenton-like reactions and helps to expand the application of DACs in various catalytic reactions.

Keywords: atom; fenton like; like reaction; spin state

Journal Title: Environmental science & technology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.