LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Significance of Co-ion Partitioning in Salt Transport through Polyamide Reverse Osmosis Membranes.

Photo from wikipedia

Salt permeability of polyamide reverse osmosis (RO) membranes has been shown to increase with increasing feed salt concentration. The dependence of salt permeability on salt concentration has been attributed to… Click to show full abstract

Salt permeability of polyamide reverse osmosis (RO) membranes has been shown to increase with increasing feed salt concentration. The dependence of salt permeability on salt concentration has been attributed to the variation of salt partitioning with feed salt concentration. However, studies using various analytical techniques revealed that the salt (total ion) partitioning coefficient decreases with increasing salt concentration, in marked contrast to the observed increase in salt permeability. Herein, we thoroughly investigate the dependence of total ion and co-ion partitioning coefficients on salt concentration and solution pH. The salt partitioning is measured using a quartz crystal microbalance (QCM), while the co-ion partitioning is calculated from the measured salt partitioning using a modified Donnan theory. Our results demonstrate that the co-ion and total ion partitioning behave entirely differently with increasing salt concentrations. Specifically, the co-ion partitioning increased fourfold, while total ion partitioning decreased by 60% as the salt (NaCl) concentration increased from 100 to 800 mM. The increase in co-ion partitioning with increasing salt concentration is in accordance with the increasing trend of salt permeability in RO experiments. We further show that the dependence of salt and co-ion partitioning on salt concentration is much more pronounced at a higher solution pH. The good co-ion exclusion (GCE) model─derived from the solution-friction model─is used to calculate the salt permeability based on the co-ion partitioning coefficients. Our results show that the GCE model predicts the salt permeabilities in RO experiments relatively well, indicating that co-ion partitioning, not salt partitioning, governs salt transport through RO membranes. Our study provides an in-depth understanding of ion partitioning in polyamide RO membranes and its relationship with salt transport.

Keywords: ion partitioning; salt; salt permeability; salt concentration; ion

Journal Title: Environmental science & technology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.