Bioelectrochemical-based biogas upgrading is a promising technology for the storage of renewable energy and reduction of the global greenhouse gas emissions. Understanding the electron transfer behavior between the electrodes and… Click to show full abstract
Bioelectrochemical-based biogas upgrading is a promising technology for the storage of renewable energy and reduction of the global greenhouse gas emissions. Understanding the electron transfer behavior between the electrodes and biofilm is crucial for the development of this technology. Herein, the electron transfer pathway of the biofilm and its catalytic capability that responded to the cathode potential during the electromethanogenesis process were investigated. The result suggested that the dominant electron transfer pathway shifted from a direct (DET) to indirect (IDET) way when decreasing the cathode potential from -0.8 V (Bio-0.8 V) to -1.0 V (Bio-1.0 V) referred to Ag/AgCl. More IDET-related redox substances and high content of hydrogenotrophic methanogens (91.9%) were observed at Bio-1.0 V, while more DET-related redox substances and methanogens (82.3%) were detected at Bio-0.8 V. H2, as an important electron mediator, contributed to the electromethanogenesis up to 72.9% of total CH4 yield at Bio-1.0 V but only ∼17.3% at Bio-0.8 V. Much higher biogas upgrading performance in terms of CH4 production rate, final CH4 content, and carbon conversion rate was obtained with Bio-1.0 V. This study provides insight into the electron transfer pathway in the mixed culture constructed biofilm for biogas upgrading.
               
Click one of the above tabs to view related content.