LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fe(II)-Catalyzed Transformation of Ferrihydrite with Different Degrees of Crystallinity.

Photo by scw1217 from unsplash

Natural occurring ferrihydrite (Fh) nanoparticles have varying degrees of crystallinity, but how Fh crystallinity affects its transformation behavior remains elusive. Here, we investigated the Fe(II)-catalyzed transformation of Fh with different… Click to show full abstract

Natural occurring ferrihydrite (Fh) nanoparticles have varying degrees of crystallinity, but how Fh crystallinity affects its transformation behavior remains elusive. Here, we investigated the Fe(II)-catalyzed transformation of Fh with different degrees of crystallinity (i.e., Fh-2h, Fh-12h, and Fh-85C). X-ray diffraction patterns of Fh-2h, Fh-12h, and Fh-85C exhibited two, five, and six diffraction peaks, respectively, indicating the order of crystallinity: Fh-2h < Fh-12h < Fh-85C. Fh with the lower crystallinity has a higher redox potential, corresponding to the faster Fe(II)-Fh interfacial electron transfer and Fe(III)labile production. With the increase of initial Fe(II) concentration ([Fe(II)aq]int.) from 0.2 to 5.0 mM, the transformation pathways of Fh-2h and Fh-12h change from Fh → lepidocrocite (Lp) → goethite (Gt) to Fh → Gt, but that of Fh-85C switches from Fh → Gt to Fh → magnetite (Mt). The changes are rationalized using a computational model that quantitatively describes the relationship between the free energies of formation for starting Fh and nucleation barriers of competing product phases. Gt particles from the Fh-2h transformation exhibit a broader width distribution than those from Fh-12h and Fh-85C. Uncommon hexagonal Mt nanoplates are formed from the Fh-85C transformation at [Fe(II)aq]int.= 5.0 mM. The findings are crucial to comprehensively understand the environmental behavior of Fh and other associated elements.

Keywords: 12h 85c; degrees crystallinity; catalyzed transformation; different degrees; transformation; crystallinity

Journal Title: Environmental science & technology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.