Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of nanomaterials identified in premanufacture notices. However, environmental fate models developed… Click to show full abstract
Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of nanomaterials identified in premanufacture notices. However, environmental fate models developed for traditional contaminants are limited in their ability to simulate nanomaterials' environmental behavior by incomplete understanding and representation of the processes governing nanomaterial distribution in the environment and by scarce empirical data quantifying the interaction of nanomaterials with environmental surfaces. In this study, the well-known Water Quality Analysis Simulation Program (WASP) was updated to incorporate particle collision rate and particle attachment efficiency to simulate multiwalled carbon nanotube (MWCNT) fate and transport in surface waters. Heteroaggregation attachment efficiencies (αhet) values derived from sediment attachment studies are used to parametrize WASP for simulation of MWCNTs transport in Brier Creek, a coastal plain river located in central eastern Georgia, and a tributary to the Savannah River. Simulations using a constant MWCNT load of 0.1 kg d-1 in the uppermost Brier Creek water segment showed that MWCNTs were present predominantly in the Brier Creek water column, while downstream MWCNT surface and deep sediment concentrations exhibited a general increase with time and distance from the source, suggesting that MWCNT releases could have increasing ecological impacts in the benthic region over long time frames.
               
Click one of the above tabs to view related content.