LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Heating Rate of Light Absorbing Aerosols: Time-Resolved Measurements, the Role of Clouds, and Source Identification.

Photo from wikipedia

Light absorbing aerosols (LAA) absorb sunlight and heat the atmosphere. This work presents a novel methodology to experimentally quantify the heating rate (HR) induced by LAA into an atmospheric layer.… Click to show full abstract

Light absorbing aerosols (LAA) absorb sunlight and heat the atmosphere. This work presents a novel methodology to experimentally quantify the heating rate (HR) induced by LAA into an atmospheric layer. Multiwavelength aerosol absorption measurements were coupled with spectral measurements of the direct, diffuse and surface reflected radiation to obtain highly time-resolved measurements of HR apportioned in the context of LAA species (black carbon, BC; brown carbon, BrC; dust), sources (fossil fuel, FF; biomass burning, BB), and as a function of cloudiness. One year of continuous and time-resolved measurements (5 min) of HR were performed in the Po Valley. We experimentally determined (1) the seasonal behavior of HR (winter 1.83 ± 0.02 K day-1; summer 1.04 ± 0.01 K day-1); (2) the daily cycle of HR (asymmetric, with higher values in the morning than in the afternoon); (3) the HR in different sky conditions (from 1.75 ± 0.03 K day-1 in clear sky to 0.43 ± 0.01 K day-1 in complete overcast); (4) the apportionment to different sources: HRFF (0.74 ± 0.01 K day-1) and HRBB (0.46 ± 0.01 K day-1); and (4) the HR of BrC (HRBrC: 0.15 ± 0.01 K day-1, 12.5 ± 0.6% of the total) and that of BC (HRBC: 1.05 ± 0.02 K day-1; 87.5 ± 0.6% of the total).

Keywords: absorbing aerosols; resolved measurements; time resolved; day; light absorbing

Journal Title: Environmental science & technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.