LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermal Stability of Particle-Phase Monoethanolamine Salts.

Photo from wikipedia

The use of monoethanolamine (MEA, 2-hydroxyethanamine) for scrubbing of carbon dioxide from combustion flue gases may become the dominant technology for carbon capture in the near future. The widespread implementation… Click to show full abstract

The use of monoethanolamine (MEA, 2-hydroxyethanamine) for scrubbing of carbon dioxide from combustion flue gases may become the dominant technology for carbon capture in the near future. The widespread implementation of this technology will result in elevated emissions of MEA to the environment that may increase the loading and modify the properties of atmospheric aerosols. We have utilized experimental measurements together with aerosol microphysics calculations to derive thermodynamic properties of several MEA salts, potentially the dominant forms of MEA in atmospheric particles. The stability of the salts was found to depend strongly on the chemical nature of the acid counterpart. The saturation vapor pressures and vaporization enthalpies obtained in this study can be used to evaluate the role of MEA in the aerosol and haze formation, helping to assess impacts of the MEA-based carbon capture technology on air quality and climate change.

Keywords: stability particle; technology; particle phase; monoethanolamine; thermal stability

Journal Title: Environmental science & technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.