LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Indirect Photochemical Formation of Carbonyl Sulfide and Carbon Disulfide in Natural Waters: Role of Organic Sulfur Precursors, Water Quality Constituents, and Temperature.

Photo from wikipedia

Carbonyl sulfide (COS) and carbon disulfide (CS2) are volatile sulfur compounds that are critical precursors to sulfate aerosols, which enable climate cooling. COS and CS2 stem from the indirect photolysis… Click to show full abstract

Carbonyl sulfide (COS) and carbon disulfide (CS2) are volatile sulfur compounds that are critical precursors to sulfate aerosols, which enable climate cooling. COS and CS2 stem from the indirect photolysis of organic sulfur precursors in natural waters, but currently the chemistry behind how this occurs remains unclear. This study evaluated how different organic sulfur precursors, water quality constituents, which can form important reactive intermediates (RIs), and temperature affected COS and CS2 formation. Nine natural waters ranging in salinity were spiked with cysteine, cystine, dimethylsulfide (DMS), or methionine and exposed to simulated sunlight over varying times and water quality conditions. Results indicated that COS and CS2 formation increased up to 11× and 4×, respectively, after 12 h of sunlight, while diurnal cycling exhibited varied effects. COS and CS2 formation was also strongly affected by the DOC concentration, organic sulfur precursor type, O2 concentration, and temperature, while salinity differences and CO addition did not play a significant role. Overall, important factors in forming COS and CS2 were identified, which may ultimately impact their atmospheric concentrations.

Keywords: natural waters; cos cs2; organic sulfur; sulfur precursors; formation; sulfur

Journal Title: Environmental science & technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.