LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling Atmospheric Age Distribution of Elemental Carbon Using a Regional Age-Resolved Particle Representation Framework.

Photo from wikipedia

The aging process of soot particles has significant implications when estimating their impacts on air quality and climate. In this study, the source-oriented University of California at Davis/California Institute of… Click to show full abstract

The aging process of soot particles has significant implications when estimating their impacts on air quality and climate. In this study, the source-oriented University of California at Davis/California Institute of Technology model with externally mixed aerosol representation is expanded to track the age distribution of elemental carbon (EC) in Southeast Texas. EC with the age of 0-3 h (i.e., emitted less than 3 h ago) accounted for ∼70-90% of the total in urban Houston and 20-40% in rural areas of southeast Texas in August 2000. Significant diurnal variations in the mean age of EC are predicted, with higher contributions from fresh particles during the morning and early evening due to increased traffic emission and reduced atmospheric mixing. Spatially, the mean age of EC decreases with proximity to major sources. Ground-level EC with the age >6 h is less than 20% of the first age group over land, and background EC accounts for the majority over the Gulf of Mexico. Differences in EC spatial distribution indicate that age distribution could have regional impact on aerosol optical and hygroscopic properties, and thus potentially affect cloud formation and radiation balance. Appropriately accounting for the differential properties due to age distribution is needed to better evaluate aerosol direct and indirect effects.

Keywords: elemental carbon; age distribution; distribution elemental; age; distribution; representation

Journal Title: Environmental science & technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.